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In the vioinity of a body @ a wind tunnel the
displacement effect of the wake, due to the finite
dimensions of the stream, produops a pqessura gradient
which evokes a “changeof drag. In Incchcpresolbleflow
this change of drag is so small, in General, that ono
does not have to take it into account in wind-tunnel
meamrem.ents; however, in oomprossib.leflow it beoomes
considerably larger, so th~t a correction factor 1s
neoessady for measured valu9sm” Correction factors for
a closed tunnel and an open jet with ciroular cross
seotions are calculated and oompazwd with the drag -
oorrectfons already bown foI!high-speed tunwls.

1. INTRQIXJCTIGN

The presant report dsals with the effect of the “
finite dlmanslons of the stz%sm on the drag of models in
compressible flow. It wIII be assumcd~that tha model
is in either an Inflnite>y low open jet or an infinitely
long closod tunnel in which there is Q perfectly constant
vel.ocltywithout the model Installation. Theraforo, the
olosed wind tunnel must be sli~htly tunerod to uompansate
for the effect of the inoreasin~ lxnandarylayer. ~
following tunnel oorreotlons will ho applied for those
Oondlticms: “.
. .

(1) When the model’is in.M Infinitely long air
stream the stre~ines near the model are diverted and

...

*?Wtderstandskorrektur in Hochgqsohwindigkeltdkan&l.en,n
Zentrals f%r wi.ssenschaftllehesBerichtswesen der Luft-
f’ahrtforsohungdes (3eneralluftzeugmeistors(Z ) Berlln-
Adlershof - RFB 1955, G6ttlngen, April ~., 19 .
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the velocities Itimeased; however, if’t~model is in a ‘
tunnel of finite dimensions,”thd Atreamllnes can not bend
outward at the walls cf the closed tunnel nor the veloolty
increase at tha boundary of an open jet. Instead, an
additional flow appears whloh produces an increase in
the velocity of the approaching flow at the model in the
case of a closed tunnel and a decrease in the case of an
open jet. This correction was extended by B. G6%hert
(1) and A. V. Baranoff (2) to compressl>le flow. It is
designated below briefly, as the displacement correction
factor.

(2) On account of the drag, .a region:of”dead alr
arises behind the body by which the flow Is deflected
laterally. Beoause of the boundary conditions, an
additional flow again arises at the boundary”of “the
stream which, while it does not produce a velocity com-
ponent at the model in the closed tunnel on the other
hand 6vokes an additional veloclty at an lnfinlte distance
upstream from the model. 3tnce the velocity at an . .
infinite distance upstream from the model serves as a
reference quantity, 8 correction ?acto& is hecessary.
B. G&hert (1) calculated It for compressible flows and,
for short, It is hereafter called the dead-air displacement
correction factor. This correction vanishes for free flow.

Aside from these two cor~ctior. factors, a third one
Is necessary for the followingreason. “Theadditional
velocity evoked b.ythe boundaries of the s~eam on account
of the displacement effect of the dead air ‘producpsa
velocity gradient and, hence, a pressure gradient. Since
the model Is then in these pressure gradients, It experl-
emes an additional drag or fcrward-acting force. The
correction necessary to compensate for this change of
drag will be handled In the present report. It is called”
the dead-air pressure gradient correction factor?

II. CALCULATION OF THE CORfidCTIONFACTOi?FOi3TEZ DEAD-AIR

PRESSURE GRADIENT WITH INCOMPRZS513LE FL07i
. .. .

To begin with, the correction factor is mmputed for
.$he pressure gradient of the dead air for a closed circular
tunnel, and a olroular open jet”with Incompressible f’low.
Consider a body of revolution located along the axis.of
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a dosed tunnel. AS a result of its dr~g the body has
,,. . a wake, whose effeot on thelsurro~ld- air 1s ‘hat ‘f a

“bar with’h-”driig-a~a“FN= ~ ~ ~ “l~oa*d be~* t~

body, or a source at.the po;f.t.ion.of the model with the
yield (1)

(1)

where @ is the drag coefficient, FM the reference

s~fa~e$ and ~o the tlow velocity of the model. The
qutitY FN~ is called the effective wake area, for

short.

To define tho velocity Cnafiientat the pos~tlon of
a source which is located on the uxis of the tunnel and
substituted for the dead air, the potential of the source
is taken as @Q (x, r, “q) where x, r, q are cylindrical

coordinates ~ the ltne r = O cmincj.dos with the axis
of the tunnel. The additional flow, with tho potential
& along the tunnel wall,is defined so that

(4b = o
r wall

9- + $.for a flow @ = ,4

(d&p$ r
the quantity —

.~ model
is then tha desired vel~city

gradient at the model.

The calculation of the veloclty gradient is redhced
to conventional calculations. Multiply the equation
@ = g~ + #z by tk t~l diameter D and differentiate
with respect to x.

,

The expressions appearing in this equation are
regarded as the potentials of a stawam. inasmuch as f(Q
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re resents the potentldl of a sourae-”witha yfeld Q,
5’$~

... .... .

D ax
Is the potential of a:dtpole flow of dipole moment,

MD = Q D which is easily confirmed by substitution and

diffe ent atlon of the souroe.potential. Further,

[$

~;
?)r

= O alor~ the wall of the tunnel, whioh “

+
b

follow8 mediately from the vanishing of r along the

Vz
tunnel wall. Consequently, D —

h
13 the potential of

an additional f’10wwhich cancels the component of t~
dipole flow normal to the wall at the tunnel wall. The

a~gz
velocity of this additional flow D — 1s equal to

~$z b~~oept for thethe desired veloaity gradient
~

faotor D. This additional flow was used, In cmngction
with the “displacementcorrection f’actoralready mentioned,
exactly like a dipole, therefore the calculations that
have been carried oat for this can be applisd here.

tit p~z Po# vo, Mmand qo rP~”~’esentth8 preSSUrO,

density, velocity, Mach numb’ar,and dynanlc pressure in
the undisturbed flow far upstr~m fnointhe m&dfil,mld
p, p, V, M,and q be the corresyxidl.~ valuqs for the
principal flow plus the addlti~nal flow. In additicn,
P- PQ = Ap; P - pa = Ap, etc.

At the dipole, or model, cf dinole moment MD = D

the additional velocity is:
%. ~

(Av&~el = ‘v ~

,

according to G8thert (1), witln TV a factor depencii.ng

the tunnel and the method of sus~ensi~n in tho tunnel.

Q

on

For the example used - a body of revolution in a closed
circuler tunnel - TV = 1.020 According to the foregoil~~

(AV)aodel. is equal to D times the velocity gradient
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...

..

Or a sour~e Q at the soume. klmrefore” “

Substituting QD for MD and the expression

for Q gives .. . . ,.

E)
TV OWE ‘Id‘o=

— model 2 Dz.

By Ilernoullirstheorem

dv - -1~
—-.2qoVo

..

or
. .

by substitution

=VO+AV

from emquatlon

. .

642 dv 1
(%9

Tv
‘% ‘M “

< model = -~ model =
D3

This is thd prdssure gradient that the wake behind a
body of revolution in a closed tunnel produces at the
position of the body. ..

(1)

(2)

* it experiencesIf a body is in a pressurs gradient
&’

the”following additional drtig(3): “

AFi= -a ~ v%.
dx “

..
where ‘u $S the VOl~ of tim body. .

v~ balng t~ volume of the apparent

Vs
and a = 1 +—,

%
~SS of the.bodyo

—
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Substitution of the value from equation.(2) gives

or

(3)

If the mcdel has some tvps of supports (for example,
struts or tension wires) with ref%rence surface

‘A -
drag coefficient cWAS then the appro~rlate expression

for the pressure gradient is:

For a strut or tension wire runni~ from the nxis cf
the tunnel to the wall, then TV:% is approxhwteiy 1.35,

which oan be obtained by extrapol~tion from G6thertls
value for TV (l}. .“ . .

For the cw- corroction fzc%r It follows that:
. .

.(iJ)

From equations (3 ) and (~) it is.evideilt.thct.the COP-,
rectiou factor for the dead-sir aressure gradient Is made
considerably larger by high drag at the support.

“The derivation for a free stremn c=n be carried
out”in exactly the sam manner. In tkis ,cadeit is only
neoessary to require that no change cf vgloctty occur
at the beundar . of the stire~.”

T
Then exactly the pame

equation as (4 is obtained, tha only difference being
~ the value for whioh is Tv =-0.263, for a body‘v
of revolution in an open jet.
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Therefore, the dead-air pressure gradient in a
closed tunnel gives”a positive value for /low, t~t la$.. ..... .-m.... .~ ~n6reaae.ti..drti;..

‘Iil”k’f’ree”-streamit dausOs 8 “
deorease In Ow. Consequently, the drag values measured

In a closed t@L.must be reduce”~by t“hecorreotlon
factor for &e dead-air pressqre gradient to obtain the.
values corresponding to the free medium. Conversely, t~
values measured In the free flow must be inoreased~

III● APPLICATION OF THE RESULTS TO COIIPRESSIBLEFLOW

(a) Deflnitlon of the Effective Wake Area

The effective dead-afr surfcce for incompressible
flow was:

,,

~~
‘N = 2 ‘lJ‘M

The corresponding exrn’essionfor compressible flow
will now be defined. Accordiw to the mmentm theorem,
the drag of a body is given ?Jy:

i’
w= L/ pv(v(-)- V) df .

N

when the integration over the wake is carried out in a
aectlon behind the body where the static pressure ha~
~ain raac’hedthe ‘value Po. mther, it tS as~wed

that t~s section is located so far behind the body that “
Av=vo- V<<Voand”A()=Po- P<<PO

or

ApproxtiateSy, then

w= Po

. ..

.. .

(5)

~ ---- - ——.—-
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For the effeotive dead-al-rsurfaoe,~‘P’N,tij therefore,
.. .... .

for.the surface over.whioh th~ flbw 18 deflected by the
wake: ... ..

~ FN=&
2.

. .

, (~ TO - pv) u

or.maXing the same appro@mations as before

‘N=U/~u’L*d’ “ “)

. . A.ssti.ngno heat transferee ths model, it follows
from the energ, theor m

!(

VoS&

)
io+”~-i-~ pvdf=O

iON

..where i represents the ‘heatcontent. Sin~e pv df = &n

.(”

Vo
is always positive, the expression

9
io+ ~-i-y

must vanish across the wake, on”the average. As an
approximation, it can be set equal to zero for eaoh

. streard.ine,which then rleansthat there 1s a constant
.stagnation ~olnt temperature in the wake. ?his assumption
1s also usoa in the evalwatibn.cf loss of momentum
measurements (~). Therafo~o, .

v~ d

Proceeding from the assumption that p = po, and

introducing the quantities Lv and Ap while bearl~

in mind that i = E
IR%p

By substitution In equatim (6)

P’E= [+ (.-UKO1 J& ~ .
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..- , . . . .

and referring to equation (5)

Therefore, the effeotlve wake aro~ .‘N Is greater in

oampresslble flow for the same ~ .~an the.value in

Inoompressibl.eflow by the f’aotor
L
-1+(K. l-)Mo~o

This is &“to the faot that the wake in oompresslble “
flow has a lower density, as well as a lower velocity.

(b) Application of the Formula for the Correction Factor

for the Dead-Air Pressure Grmllent w“iththe

Aid of the Prandtl Theory

To apply equations (3) and (4) to compressible flow
the Prandtl theory will be used in the form of’the
streamline analogy (5)0 For the present problem It
reads as follows:

Assume a model in flow at a Nach number M. In a
tunnel of diameter D; in d“coiuparlsontunnel with

diameter D
K

M 2 with a model in incompressible

flow whose dimensions including the wake, have been

i
reduced by 1 - M02 at right mgles to the direction of

flow and remain unaltered in tho direction of flow. The
additional longitudinal volocitias appearing in the

.
1

compressible.flow are then — times greater
1- ~02. . . .

than

for the corresponding”pointsin the Incompressible
comparison flow.

However, at oorrespondi~ points in the comparison

tunnel the additional velocities are — times

+ M.

larger on acoount of the displacement of the dead air

—.— .—
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than in the original tunnel with incompressible flow,

sinoe the model is . longer in the incompressible..
+ - M.

o&parison tunnel relative to the diameter, while the
oross-seotional dimensions of’the model and dead air are
equally large relative to the tunnel diameter. Therefore,
for the same dead-air displacement in compressible and
incompressible flow in the same tunnel, the velocity

gradient increases by the factor 1
● Besides

(L- M02)3’2

since the dead-air displacement for the ssmq values

of Ow Inoreases by
[
l+(K-

.1
1) M02 the velocity

I + (K- l)Mo~”
gradient increases by if the Ow retains

(1 - M/) ’/2 ,
the same value.

Consequently, equation (2) takes the followlng for.%
for compressible flow .

g
@..el=* ‘8)v.

o
.

*rnoullils equaticn gives

for compressible flows; It tollows from this, that,

lQ k)
T ‘w

[
~FM I-+ (K - l)Ifo21v.-- 2=

q mode1 po2 3/2D3@ )

and when we again set
dp

W=-a ~vx”
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there “fOU.OWS

“. (9)
., -z.,. -,,. ,, .,,.

, A*M ..+.(K - 1)M02
—=. 0wM

ti (l- )~02 3/2
.. ....

or

(?. )
v~l+

“?vA~~ ‘~
E
I. + (K - l)@

~ . “a“Tv V %MFM # (lo)
CwM D3 (1 - M02)3’2 . .

. .

Equation (9) holds for a model if the drag effect of the
supports is ignored, while thlo has been taken into

. aocount in equation (10). The values to be assigned to
the factor a for compressible flow are discussed in
the next section.

..

(o) Bodies in Compressible~Flow with a Pressure Gradient

(Definltion of the Factor a)

It la a well known fact that a body of volumo
‘H

in an incompressible potential flow with a pressure -
gradient 9 experiences a drag

dx
.

●

w= -aQq
-M

., v~
According to G. I. Taylor (3), a = 1 + ~ where VS

M
Is the voluuq of the apparent mass of “thebody.’ For
slender, streamlined bodies ~~ ~~.v~;ficonsequently,

a Is approximately equal to 1. The values of the factor
a for compressible pubsonic flow wttli-pressuregradients
are obtained by .appllcationof the energy theorem-

Consider q compre-ssiblestrsam cf Infinite extent
with a pressure gradient in-t~ direction of flow. The
p~ssure.,.density, velooity, heat conte~, and internal ,
~nergy of &he pndlsturbed stream are denoted by~, ~,
v, Z, and u, respectively. When a body is In the stream,
let g, p, v, 1, and u represent the disturbed values in
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the violnlty of the body, Furtbr, assume that there is
perfect flow around the.b~dy. Then, at greater distances
from the body p = ~; p = p, etc. To continue, the
Bernoulli equation

holds for all points in the flow in a reference s~wtenl
fixed In the body. Now imagi:m & qontrol sur.t’acearound
the body with a large distance tieti.%enothe two, displace
the body by an amolmt ‘~”:til.%thq control surface
rigidly fixed and apply the .euor~y”the@5k~to the.flc~wo

-.. -
The energy removed from the X’1017by the d~splacenent

1s then equal to ~?dx, wher~ “;.’is Hm drag on the bcdy.

enclosed in the control surface, if Vk IS th~ V@l~e

enclosed by the control surface aiidii’ p = O ~t the’”
positions of the model, in evaluating the integral.
The change In the enclosed energy producod by ths
displacement or the body Is them:

. d[l(~:f’”(.~wj . ~ .

L 4

la

“ ‘~[~”~vn(++,l::-..... .“”::.. . .. -K’

plac6ment ~d $2’ an instant “afterthe tii~placcmcnt
at whicfithe stationary stiate.1sat””.inroached● ,.,> f.8r-~,.
the ‘C-Ontr“ol“s-urmf’acbmand Vn is””“ti~l”c“otiponantof “tie“

v. .. . . ..
t .. . .

“.
“.. ..-. . .

,
. .

.. ..” . .
,. T”” ,.”. . :.

. . . .

. .
.,. .
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velocity nomnal to the control surface.
.<-.. .dispzaoeme~t,of,”:tM$.tied&lthe Ee~ou2.11

.. .“
“+ “ “*

not apply in the form: ‘i+—
2

=*”+:T
..

D@ng the. ...”:
a@ation.,t@ec3 ,
J,. . .

= Constant “’sln~i ““
. .

tk@ flow in tti pfisent referOnce”system (at reatb-refeir;ed
to the”mor.iglnal~osltion of the body) is no.lo~a~ sta&Lcm-
ary, becausq of the movement of the model. 1A dloaer, . . ~
examination shows, however, that theseodevla$<ons.fall
off so rapidly wl~h ’1.ncreaa%ngdistance from the model
that for very large dist-oes uf~”thecontrbl surface froln
the model, ne~=rtheless, It 1s po$sible to writ’e.

~
l+~=T+~= Constant M“ &en.tir*ng it out in

. .
front of the Integral. &e&foreJ

-.,

)17s” “+“
T I.=’K

pvn dF.dt

The ~ntegr”alon the right side simply represents
the excess of incomhg over outfioingqass b8tWG9n the
times “tl” andt2. Therefore it t’ollswsfrom the equation

Acoording to the energy theorem the energy of the
stream.taken up durihg the displacement must equal the
loss of energy of the gas enolosed in the control space
plus the excess of energy entering the control surfaces
over that leaving. Therefore, . ..

Since.the undlsturbea quantities ~, ~, ~, ~,and Z are not
UYeoted by the dasplacemeat



.— .— —

..

..

~ dm[~j%+:+$.Vj:=”o:d([,d)=0 .
,

whor&”~, ~, and % at the positions of the model are -
“assignedthb.values that pren’11”.men no model is yeseh*.
Fr(3mthis “It”followl%

‘:~”=:,..{!!l “(u++i-~ $:$)1”.+ ~

~ + ~+$)”d [~~(p - ~J.v]

The volume intpgrals which cover tineent?.revclvme V~
enclosed by the caqtrol s-u~facoare sp~i.tinto two
integrals~ pne of wkich .extemisovor VM the spa”ce
OC~Llpiedb-ythe mode.].,while ih~ other extends over thk
space VK - PM occupied by the fluid wh$le observhg
immediately that by sssumptlcm p = C in the space VM.

..
-.* d ~J I...- b, v~ -

‘i .“

( )72+T+~

. . 1~) dV .(11)

Essentially, the only contrlbutima to the value of both
+ntegr~ls ~ver VK - VM come from the .immdiate vicinity

of the model s“ince.’p+~, u~ti, and v~~ at points
“more distant fhom the moddl. Thcretorea for sufficiently
“ large values of % the int&gr:~lsbecome independent of V=.

. . ..

. . f..: .“
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A8sumlng only a .smalipresan?e gradient in the
undisturbed flow, it oan then further be assumed as a.L--- good’approximation that the discrepancies between undls-

. .turbedand disturbed flow in the case of flow with a .
preSsure grad.lentare equal to the dlsorepanoies betwoon

-th~.samo quanti$iea In a parallel fllowwith ths same Mach
ammber ● How the last two integrala of equation {11) can
be”evaluated for corresponding parallel flow~

.. ‘ imand U. denoting tho undlaturh~d?{i.thpo, Pos vos

magnitudes of a paralleI flow

.

..”

.-’

.

In whioh the left s~de is to be evaluated for flow with
pressure gradient and the right side for a:parallel flow,
and PO, ~, V. must be taken equal to the values of ~, ii,.?
at the looation of the model.. ,
-.._.. . To,define the two integrals on the right slab one
proceeds as follows: On accelerating a model in inoa-
presslble.flow there Is d drag W where . .. . QIJ

w =.pv~dt. . . .

~
..

In whioh is the aoceleratlon with res~ot.to the
dt ...%

fltid and vg the volume of the so-oalled.apparentmass.
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.

Correspondingly, for compressible flows

(15)

where P. is the undisturbed den~ity at a distance from

the model,
‘s

the value of the apparent mass for incom-

epressible flows, the acceleratlori’relativeto the
dt

fluld and “f’(l!o)a function of’the Mach number. The.
magnitude of the function f(lio) ~wlllbe given closer

attention later on.
.

Consider, now that the model is in a parallel flow
and moves along with the.strbu. Then, p = p,o,p = po,etc.

4n the entire space occupied ‘bythe stream. The flow Is
%ewed from a reference system in which the undisturbed
velocity is Vo. At a great dis@nce from the model there

1s a perpendicular control surface. Now~ let the model
be slowed down to rest, gradually and, aga$n, apply the
energy theorem to the fluid in the control space,

During the process of slowing down the following
energy is taken from the flow

where ‘1’ ‘2’ ‘1’ ‘d ‘2
repregent the place and time

o“fthe beginhing and end Of tho displacement. Vr is

the relative veloclty of the model with respect to the .
undisturbed flow. From this one obtains, then, by

‘r
?mansfoma$iori and ta.khg into acco~t that ~ = M

V.
—= M.:

... .

a.

.’ . . . .

. .
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““ ~wm-=c~.

= v~ p.

whioh by setti~

-v~f(&).@,...vr)dvr ~
.

V02 2

i

0.’
f(hi)(M. - M) dMTQ ; (4)

. .

-M.
2.m

1
f“(M)(~ - M) dM’= g(Mo)q

o

(15)

becomes

“s
X2

V02 ;

= ‘Js PO y 8( MO)

The change in the energy enclosed in the control space is:

~j~p ~+$-co~o+~jd,.. ‘K - H ~.

For the excess of energy added over that taken away
thro~h the control surface during the braking, one has:

-..

.

—
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d
V*2

and here, too, i + ~ approaches io+~ so rapidly

with increasing separation fr~m”the model that one can
write this expression in front of the Integral.for a
sufficiently large oontrol surfam.

The energy theorem then r~ads: ..

VgPo

~02

z-
g (Mo) = - [(pu

)

~02

%’-

)4+—
2 - Po ( )]~02

Uo+y
g{

- Po) dV

However, the .rlht side Is exactly equal.to the right side
7of equation (12 . Frcxnthis thru~h substitution in

equstion (11) the following Is obtained:

:- i.

Assume now, that the pre8BlT..ofJSradient ~ :A small

and constant along the chord of filmmodel, then ~,

~;~eto. must also be considered constant alo~ the model

1
— — . . . ..—.—— —-— ... . . 11 n- —mmll- ,, mm ,
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or taking into aooount

. .
“ 19. .

.
. .. ....

-b -.,... b--h,..!, .. . . T’.=U-’+”g -* ~.+m$-=.,a&atdi*...........
p-- ‘. .. : “. . “

.-.

‘w (17)

flow one hasFor adiabatio

“+%)=- ;(.”g).g“
dx”

. .

.“.

By substituting in (17)

w=-gvM-[(l-%),(m) +:~+&q6,(~]gvs

and, to get a more.comnaet expression, Introducing

then
. .

. . . ..

w=-
\ )~ VM+h(~)VS “ ..

.

which gives””-”: “
v~

a =l+—h(fi) ___
.. . ‘M “ -

.(20)

for the faotor a in equations (9) and (10).”

Equation (lg)”now permits the definition of the drag
of atiodel In compressible potential flow with Maoh number ~
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and a pressure gradtent ~, If the acoeleratlon.drag “

of the same model for the~range of Mach numbers between “
“~ and M and, therefore the’function f(~) in
equation fL3) la known.

For Incompressible flow (M = O); r(Oj In equation (13). “
becoms 1. From that one likewise obtains 1 for the
value of h(0), and equation (19) goes over to tlhe
familiar formula developed by”Taylor

.,,

..

The additional drag expertenoed by a wing which
satisfies the”assumptlons of Prandtlls theory when it Is
in a flow where a pressure gradient exists will be -
Investigated. The first thing to detemine Is the value
of acceleration drag ~or such a wing that will give the
function I?(N) .f’r~which h(lf.)can then be obtained.

...
.,

To-begin with, 1st the wing have a stationary motion
with a velocity V. in a medium that has the undisturbed

“ vdu8~- po# Po”,i&and Uo at a distance from the model.
In a reference system with axfl.sfixed in the wing the
potential @S of”the stationary motidn then becomes:

YfS= V. x + .Qs(XS Ys z, M)

where Ts approaches zero far from the model. Now if “

the wing moves with the same velocity and a small acceler-
ation b, then the velocity field can be considered quaai.-
stationa~y, The assumption that the acceleration b be
small is necessary here ~n compressible t’lowia constrast
to the incompressible flow, since all disturbances must
spread out with a finite velocity and since at larger
accelerations they produce the larger presqure differences
appearing between accel”~ratedand unaccolerated motion,
as well as density differences and the correspor@ing
velocity differences. Then the apmoprlate potential .$
1s2 .

.
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Where Vo” is the veloolty attained exaotly at the”time :
-._..-

t ‘-0: “NOW to fi%d “outhow %h@-dif’ferenoeof pressure
ap~earlng on the wing surfaoe, at the time t = O,
between the stationary and accelerated motion depmds
on th~ Mmh number; for this pressure difference certainly
yields the aoceleratlon drag.

For the stationary motion with the assumption of
adlabatio flow, Bernoulll~s equation reads:

VS2 V02
1~+~ =lo+—

2
(21)

Applyi~ the more general form of Bernoulli.ls
equation to the motion that ?.snot stationary:

F
V2

t+~+p
-u= constant

The heat content i mm be substituted for theprea~ure f~ct~on P a~aln. U Is the potential of a
force field.that might 39 prese~t. Since the reference
system flxad in the hcdy is an accel~rated refei%ence
system, it is necessary to set U = bx. For the instant
t = O the general Bern9ull~ equation then reads

+i, - bx
o

Since tho flow is quasistqtlonary
velocity field

2. 2

b —----—-— —.

V02
E+l=— + i. f22.)
2 2

with respect to the

. ..
. .

b
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From this and.equation (21) and (22) it follows that:

acceleration and sle&ler model have been assumed, as an
approximation, therefore one can set:

AJ = Al

Then from this it follows that:

The qUantity 9S is the potentf.alof the Increased

veloclty appearing at the prof’lle. Therefore, according
to the Prandtl theory the followi~ holds at the profile
surface .

Consequently, Ap beco&”s, at the profi]-asurface

A p = ,0 ~ ~i~comre~~ible

[

1 + &

1(1- 1’2(1-?33/2I?#)
=,0+ ‘~ncomre~~~ble”*’-
The acceleration drag th.&tappears increases by

1
● ‘Therefore,according to equation (13) the

3/2
(1 - Ma)
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following holds for
1

f(~): f(M) =
(1 - ~~)3/2’

From that and “equations (15) and (18) the functi-ons
g(M) and h(M) also follow

g(M)=~[l-(l-
1

* )1/2 (23)

The function h(M) is shown in figure 2. One sees
v~

that the factor a — appearing in equation (9)= 1 + h(M) ~M

and (10) is increased ‘furtherby the effect of compressi-
ve

bility. For slender bodies for which — is small
VM

compared to 1, one can therefore also set a = 1 for
compressible flow as an approximation.

!028
drag of a
gradient
flow. m
assumed f
learn the

arguments carried
body in compressi
assume that the.fl
e validity of the
or the definition
function f (M).

out to define the potenti
,bleflow with a pressure
,OWis a perfect potential
Prandtl theory was only
of the acceleration drag

al

to

Even after the validity of the Prandtl rule has been
exceeded, with the appearance of local supersonic fields,
however, the flow can still be considered as loss-free
potential flow, if the subsequent passage of the flow
Into the subsonic region takes place adiabatically and
also if, as a coarse approximation, the flow remains
loss free in the face of weak shocks (naturally neglecting

\’The,the wake due to friction and separation of flow .
increased velocities appearing at the profile circumference
are underestimated, in this case, when obtained by Prandtl~s “
theory. Therefore, by the same arguments advanced in the :
derivation of the function h(M), in the application of
equations (25) and (2b),at Wachnumbers exceeding the
critical value, the correction factor is somewhat
underestimated:

For slender bodies
flow VS i.svery small

-mm,,,,,,,!4, ,,,,,M.,,-,“-”l.!..!.!

of rotation in incompressible
compared to VM, so one can

.!. , —,,,--.!. . m. . . ! . . . . .
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set a=l” as a good approximation Now, qince the .
hduced Velooitles increase considerably slower$or . c ..:

the body of rotation than for the-wing, the function - .
:~) deviates from l.still less, so that one can

a = 1 8s a good approximation in compressible
flow for bodies of rotation.

IV, LIMITATIONS”IN THE APPLICATION
.;., .-

OF THE COl?RECTIGUFACTOR ●

.. .. . . . ‘.... 0

So far, the dead atr.has simp~y been replaced by
.-J.

a source, at the center OS gravity of the model, df such . :.
a strength that the d~spla~eme.atit produced downstream
from the model was equal to tke c-cad-airdisplacement. ‘ : .
The velocity gradient of the additional flow was then
defined at this source on the assumpt~on of coristancy “.
over the entire ohard of’the model. Actually, the
substitute-source should be split up into many small
sources and suitably distributed to ~it in along tbm
model ~~ideventually the forward part of tinewake.
Then the additional flow of all these.sources should
be determined and from this By integration the velocity
gradient which could vary along *he.m@el. .

..” ..
To check to what exlxmt the above.slmpli.flcaticns “

are permissible, consider fi~wre 3. ..-

“ 133rethe variation of the..additionalvelocity along
the tunnel skis is given for a source Q on the tunnel
axis in”incompressible flow, According to figure 3 the “..
curve for the closed tunnel Ia-def.lnedfor a dipole c “ “.!
from the additional flow by lntegratior~. The values-for . -
the add$tlonal flow for -adipole are taken from a calcu-
lation by V. Btiranoff(2) for the displacement correction “
f’actori Suoh a single source produces an appioximutely
c~qstanf.veloclty gradient of the additional flow for ..”
ipproxhately 0.7 tunnel Faalus, both upstream and
downstrti~. “Therefore, 3i?.themodel.is.short (less than “~:
0.7 Wmialmradius) It”ls:fi qterial.hm the single

T

..

sources”t&e distributed ins,d.e.i$hernode~:because the .~,‘ ~
resulting Veldcity gradient is.alwam.,tilib.same as fq a-“““:
combined sdurce of equal total strength. HoWaver, plnce”””
the prinoipal part of’the volume of a longer stfieaml~nea”“;”
body is in ”tlie’”c~fiterof.the modql and, .\naddit~on,,the

.. . ““; .
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substitute soume.s are to be applled to the central .
.. .-.pqrtlonof .the,tmdy,.esg!entially,t@ formula derived

for Incompressible flow oti be used .@ ‘%d-”rnddellen@hs -
of om tunnel diameter. “

The vartation of thp additional:velodlty for
ooumressible“flowfor the mame breadth of wake Is obtained
by ke

faotor

..

factor

Prandtl theorem by increasing the ohdinates by a
1

of — and decreasing the abscissae by a
1- M02

0’F=*
Therefore, the model length for which calculations

can be made with constant velocity gradients is m
shorter for compressible flow than for inccmpress~ble
flow ● If the model exceeds the permissible length, the
amount by which the correction factor from tinederived
formula 1s too large can be estimated from figure 3.. .

~ variation of the additional flow of a source
in a free jet with incompressible flow also appears in
figure 3; The curve 5.staken frcm the work of
D. Kifchemannand F. Vandry (6). One obtains the variation
for compressible flow by the same distortions as for
the closed tunnel. It is apparent.that the correction
faotor for tho free flow hag thc~opposite sign from the
closed tunnel. In addition, the correction factor IS .
only about a fourth as large as for the closed tunnel.
The length over which the pressure gradient canbe
considered constent is likewise smaller for free flow.
By means of figure 3 an estimate can be made of the
amount by which the correction factor formulas indicate
the oorreotion factor too large for longer models.

..
AS stated already, the correction tormula for

free flow with the seinesize models h t~ls of ths
same size is approximately one fourth that for the
olosed tunnel. Wtth long models, for whloh the validit’~
of the correction formula has alremadybeen exceeded,
since I* can not be evaluated ovar tha-entire length of
the model with oonstant pressure gradients, the offeotlve
oorreotion factor with free jet is considerably smaller
tian.a fourth of the correction factor for a closed tunne> i’

.
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$or the formulas which apply for con~tant pressure
gradtents lose”their valldl.tywith”a”free jet even with
smaller models, and fndicate the corrections too large.

V- COMPARISON OF TEE CORRECTION FACTOR DERZVED WITH OTHER

DRAG GORREOTION FACTORS AT HIGH hiA& MUMB3RS
. .

According to G&hert (1) the displacement correction
factor furnishes.the i’ollowhg velues for the dynamic
pres3ure, or cW, without tuking into acoount the support:

On comparing these correction factors with the correction
factor for the dead-hfr pressure gradient (equation (9)), it is
seen tks.tfor Incompressible flow (U

8
= Oj the

correction factor for the dead-air pr ssure gradient up
to the faotors a or kv, which are nearly 1 for

slender bodies, IS half as large as the displacement
correction factor. Moreover, for incoaprosslble flow

~sah
a= l+— ~ is a factor with which the substi-

v~
tute dipole strength can bs obtained from the volume of “
a body azndthe velocity of flow near lt- Ao Glauert (~)
who defines Xv somewhat differently has shown, a = Av

exactly for Incompressible .tlowO

The Increase of the correction factor with Uach
number is different, h~wever, for the two correction -
factors.

In figure 1 the ratio of compressible to incoinprassible
correction factors for conditions alike in other respects
Is plotted against Mach number. ‘l%=correction factor
for the dead-air pressure gradient rises conslderabl

<faster than the displacement correction factor, so t4at with
M = 0.85 tho dead-air pressum~~atiiont correction factor
Is alrsady just as l~rge as the displacement correction
factcr, while at N = O It was only half as large,

— -,-11— —-m-mm,
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Accor&fng to-,~thert, the dead-air
... . ..Gorrectiorimfactofifurnishea“for a model

27

displacement
without taking

, lr~to”iccotitthe’“support
—.--. . .... ....

. .. ... . ..

()

~02 “ “
.

~ cw~ F~q 1 - ~“.h=.~.= .
..

M ~ D2 (“1- E02)
~.. . . ..“

or’“%aktngIn&o account the”s-e adin “outof”t~ dead

2;F ( ) [

falr.”thrcughcompresslbt Ity and III a)
~:02

‘% =
~~l”y l+(K-

1
1) M02

-“

%

The ~ise ot this correction factor .vithMach number
i;”likewise shown I.nfigum 1. It rises even slower with
Mach number than the displacement correction fa~tor.
.Sinoe ths dead-air displacement eorrsction factor for
lngomp~essible flow and slender hcdies with slfiallCw

. Is stil?.erin gerAeralthan tlm ~t~iertwo correct~on
factors, it lags Lehlnd these even more at higher Mach
numbnrc.

‘l!hmughthe drag of’the sup~~rts, tha ~ioad-.slr
“ presti-me-gradientcorrection factcn?cm be Increassd
cons-Ldorablyas shown In equation (10). It can then
considerably exceed the df.spl.acemr~tcorrect:.onfactor
If the wpports have very la=’~edsag tor relativel~
small vrlutne(for example tensln v~ire3or struts, on
axceeding the critioal Mach numbar). .

As an extreme exavl.pie,ccnslder a streamlined body
of rotation wtth a Ciiaiileterof 100 millimeters, mt! a
volume 2 liters, in a closed tunnel with a diameter of
1 meter. The body Is suspended ch SIX strong l~illimeter
gauge ronslc)nwir~s.which run pe??pendicularto the flow
from the mod~l to tlx wall. -The drag coefficient for

for the tension wires It is.t~ qodol is 9W ‘.Csc~J . . . . . . . . . .

Cw = 1.5 “and the Maoh numbs??is O-8* Then ~quation (10)

. .

. .
..-.

~. .... .

, , ,-, ,,,, ,,. .,, —, ,,
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This mans that, in this case, the @rag .i.sin errpr by
13 ~ticeqt .becauae-of the dead-atr “pressuregradients.
Displacements correction.faotor and,dead-air dhplacement
correction factor otiy give 1.3 pert’entand 0.65 percent,
respectively, aocording.tq Gldthert.

This exanipleSHOWS thqt.attention must be given to
this p~ohlem In hi-gh:apeedtumels in the measurement of
models with low drag, to keep the drag of the supports
very low SG that dead-a!r pressure gradients wf~l not “.
give falsq drag indications. Tension wires.ahd, struts
too, for which thg critical Mach number Is reached
rather early are, therefore, extremely dtsadvantageous~

. . VI. wT.wiiFtY ~ .

It has been shown that in atiditlon.to the usual
drag and Kach nunibercorrection factors for high-speed
t~els which take into account charngeof velocity at .
the position df the model due to the model and dead-
air displacement, a further drag correction is necessary.
This correction facton designated tiledead-air pressure-
gradienb correction factor,ls based on tho fact that
a pressure gradient arises when the dead air departs
fron the position of the model, which produces a~
additional drag or forward-acting force. It has been
shown that this corr~ction factor is of the same order .“
of magnitude as the other twG corrscticn factors and
that it can even be considerably larger in special cases.
Iq tiddition,It rises the fastest of all correction
factors with an increase In Mach number under conditions
that are otherwise alike.

The following formula has been derived for the dead-
alr prassure gradient correction In the closed circular

‘-~::~F:-)’+(’-’)M~ :

q= “ ‘D3 (1 - M02)5~2

In this, a is a factor which depends on the shape of
the model and Is somewhat larger than 1 for streamlined
bodies. For streamlined bodies of rotation a = 1 1s

I

I
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VE
~“goo~ .~proxtiatlon. For a .~ing a = 1 + h(Mo) _. . ....,..,-,,.,! ...1.- VM
;~~. :.+8.-i8”the.”%1-~~ Of”m“ “~pti~~n~*s”s df t~ .

wing .Ik.in$omp~e~alblo”flow.and vi w vila9 .of.~~e (

~t~; “‘“h(~o) 18”a fticiion “o;.t~”~ach “nmber ‘hioh ‘s
shown In fiw. 2s . ... ...

..-

TV - 7~A are factors which depend on the

tunnel shape and the installation of”the model, that
is the mounting in the tunnel. For bodies at,the center
of’the tunnel with small cross extent relatlwe to.the
tunnek d%meter, Tv = 1.02 in a closed circular tunnel

and Tv = -0.263 In a circular open jet under the

same conditions,

AocordlnC to .Gtithert(4), in the closed tunnel
for.a wi~ whose wink spa B 1s no lbngen smali Irl
comparison With the tunnel diametbr D the factar Tv ‘

becomes
.

B/b o 0.25 0.5 ~975

Tv 1.02 1.0!+ 1.06 ‘1010

By extrapolation to B/b = 1, Tv % 1;16 is obtained

for susDen9ion devices (struts.&d tension w.1.res] “
reachli~ frcm the center or a closed tunnel to the tunnel
boundary. The quw.tity % Is the volume of the model.,
Sndc and FAw> %A9 FMS , represent the drag coefficients

and, reapeot~vqly, ~he re’f’erenoesu.rfaoe8of the model
, ,(sumcrlpt k) and the aup~or~ (su~script A).

“ The function 1 + ‘K = 1).~o indloates how many

-(1.- M:?)3fi ~ . “

times larger the dead-air “pressure~radl.entis for a
.’ Maoh number . M. than in .lncompressihleflow (compare

fig. 1).
,. w



~ conclusion, In determining drags through loss of
mo~bn$um,measune~nts, the .dead-@irpressure-gradient
ootiebtibn factor disappears slme the additional drag
duq:to tbe .~.essuregradient of tim wake Is a pure
potenttal”dmig Whloh Is not associated with any loss
of t?lowaM, oh that account, is not noticeable In
~ewake~. . - . ~,.

Translated by Dave Felngold
Natiohal Advisory Committee
for Aeronautics .
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